周明兵

发布时间:2022-10-31     点击数:

9187

个人简介

周明兵,男,1975年10月出生,教授,浙江省151人才工程第三层次,浙江省中青年学科带头人。

研究方向

竹子生长发育表观遗传学,竹子快速生长机理

学习与工作经历

2000年9月-2003年7月:贵州大学攻读硕士学位

2006年9月-2010年11月:上海交通大学攻读博士学位

2009年9月-2010年3月:德国亥姆霍兹国家研究中心访问学者

2003年7月至今:浙江农林大学教师

教学工作

研究生课程:蛋白质工程,生物信息学

本科生课程:细胞与分子生物学,细胞生物学,分子生物学

科研项目

1.毛竹LTR反转录转座子响应环境变化的分子机理,国家自然科学基金项目,2019.1.1-2022.12.31,60万元,主持(1/7)

2.毛竹MLE(mariner-like element)转座酶催化机理研究,浙江省自然科学基金重点项目,2019.1.1-2022.12.31,主持(1/6)

3.毛竹LTR反转录转座子转座调控机理及对宿主生物多样性的影响,国家自然科学基金项目,2015.1.1-2018.12.31,87万元,主持(1/8)

4.毛竹活性MITE的分离及与宿主基因表达调控网络互作机制解析,国家自然科学基金项目,2013.1.1-2016.12.31, 80万元,主持(1/8)

5.竹亚科LTR反转录转座子的分布和增殖模式及对宿主基因组进化的影响,浙江省杰出青年项目,2012.1.1-2016.12.31,30万元,主持(1/1)

6.由居间分生组织调控的毛竹快速拔节生长的分子机理研究,国家自然科学基金项目,2016.1.1-2018.12.31,24万元,2/6

7.超活性mariner-like转座子的构建及在基因标签技术应用的探讨,国家自然科学基金项目,2010.1.1-2013.12.31,31万元,主持(1/8)。

论文与专著

1.论文

1)Ramakrishnan M, Papolu PK, Satish L, Vinod KK, Wei Q, Sharma A, Emamverdian A, Zou LH,Zhou M*. Redox status of the plant cell determines epigenetic modifications under abiotic stress conditions and during developmental processes. J Adv Res. 2022, 42: 99-116.

2Papolu PK, Ramakrishnan M, Mullasseri S, Kalendar R, Wei Q, Zou L−H, Ahmad Z, Vinod KK, Yang P andZhou M*. Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress. Front. Plant Sci., 2022, 13:1064847. doi: 10.3389/fpls.2022.1064847

3Ramakrishnan M, Papolu PK, Mullasseri S,Zhou M, Sharma A, Ahmad Z, Satheesh V, Kalendar R, Wei Q. The role of LTR retrotransposons in plant genetic engineering: how to control their transposition in the genome. Plant Cell Rep. 2022. doi: 10.1007/s00299-022-02945-z. PMID: 36401648.

4Zhou X, Xie J, Xu C, Cao X, Zou L-H andZhou M*.(2022) Artificial optimization of bamboo Ppmar2 transposase and host factors effects on Ppmar2 transposition in yeast. Front. Plant Sci. 13:1004732. doi: 10.3389/fpls.2022.1004732

5Ding Y, Zou LH, Wu J, Ramakrishnan M, Gao Y, Zhao L,Zhou M*. The pattern of DNA methylation alteration, and its association with the expression changes of non-coding RNAs and mRNAs in Moso bamboo under abiotic stress. Plant Sci. 2022, 325:111451. doi: 10.1016/j.plantsci.2022.111451. Epub 2022 Sep 6. PMID: 36075278.

6Ramakrishnan M, Rajan KS, Mullasseri S, Palakkal S, Kalpana K, Sharma A,Zhou M, Vinod KK, Ramasamy S, Wei Q. The plant epitranscriptome: revisiting pseudouridine and 2'-O-methyl RNA modifications. Plant Biotechnol J. 2022, 20(7):1241-1256. doi: 10.1111/pbi.13829. Epub 2022 May 11.

7Papolu PK, Ramakrishnan M, Wei Q, Vinod KK, Zou LH, Yrjala K, Kalendar R,Zhou M*. Long terminal repeats (LTR) and transcription factors regulate PHRE1 and PHRE2 activity in Moso bamboo under heat stress. BMC Plant Biol. 2021, 21(1):585. doi: 10.1186/s12870-021-03339-1.

8Ramakrishnan, M., Satish, L., Sharma, A., Kurungara Vinod K., Emamverdian A.,Zhou M., Wei Q. Transposable elements in plants: Recent advancements, tools and prospects. Plant Mol Biol Rep, 2022, 40: 628–645. https://doi.org/10.1007/s11105-022-01342-w

9Ramakrishnan M, Satish L, Kalendar R, Narayanan M, Kandasamy S, Sharma A, Emamverdian A, Wei Q,Zhou M*. The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci. 2021, 21;22(21):11387. doi: 10.3390/ijms222111387.

10Ramakrishnan M, Yrjälä K, Sharma A, Satheesh V, Cho J,Zhou MB*. (2020). Genetics and genomics of moso bamboo (Phyllostachys edulis): current status, future challenges and biotechnological opportunities towards a sustainable bamboo industry. Food and Energy Security, doi: 10.1002/fes3.229.

11Tao GY, RamakrishnanM,Vinod KK, Yrjälä K, Satheesh V, Cho J, Fu Y,Zhou MB*. (2020). Multi-omics analysis reveals cellular pathways for rapid growth of moso bamboo. Tree Physiology. doi.org/10.1093/treephys/tpaa090.

12Ramakrishnan M,Zhou M*, Pan C, Hänninen H, Yrjälä K, Vinod KK, Tang D. Affinities of Terminal Inverted Repeats to DNA Binding Domain of Transposase Affect the Transposition Activity of Bamboo Ppmar2 Mariner-Like Element. Int J Mol Sci. 2019, 20(15), 3692; https://doi.org/10.3390/ijms20153692

13Li S#, Ramakrishnan M#, Vinod K K, Kalendar R, Yrjälä K, &Zhou M*. (2020). Development and deployment of high-throughput retrotransposon-based markers reveal genetic diversity and population structure of Asian bamboo. Forests, 11(1), 31.

14Ramakrishnan M,Zhou MB*, Pan CF, Hänninen H, Tang DQ, Vinod KK. Nuclear export signal (NES) of transposases affects the transposition activity of mariner-like elements Ppmar1 and Ppmar2 of moso bamboo. Mob DNA. 2019, 10:35. doi: 10.1186/s13100-019-0179-y. eCollection 2019.

15Zhou M*, Wu J, Ramakrishnan M, Meng X, Vinod K. Prospects for the study of genetic variation among Moso bamboo wild-type and variants through genome resequencing. Trees, 2018, https://doi.org/10.1007/s00468-018-1783-z.

16Zhou M*, Zhou Q,Hänninen H. The distribution of transposable elements (TEs) in the promoter regions of moso bamboo genes and its influence on downstream genes. Trees,2018, 2(2):525–537.

17Zhou M*, Zhu Y, Bai Y, Hänninen K, Meng X. Transcriptionally active LTR retroelement-related sequences and their relationship with small RNA in moso bamboo (Phyllostachys edulis). Molecular Breeding, 2017,37:132.

18Zhou M*, Chen A, Zhou Q, Tang D, Hänninen K. A moso bamboo (Phyllostachys edulis) miniature inverted-repeat transposable element (MITE): the possible role of a suppressor. Tree Genetics & Genomes (2017) 13: 129.

19Zhou M, Hu H, Liu Z, Tang D. Two active bamboo mariner-like transposable elements (Ppmar1 and Ppmar2) identified as the transposon-based genetic tools for mutagenesis. 2016, Molecular Breeding, 36:163.

20Zhou M*, Liang L, Hänninen K. A transposition-active Phyllostachys edulis LTR retrotransposon. Journal of Plant Research, 2018, 131:203–210.

21Zhou MB, Hu H, Miskey C, Lazarow K, Ivics Z, Kunze R, Yang G, Izsvák Z, Tang DQ. Transposition of the bamboo Mariner-like element Ppmar1 in yeast. Mol Phylogenet Evol,2017,109: 367-374

22Zhou M, Hu B, Zhu Y. Genome-wide characterization and evolution analysis of long terminal repeat retroelements in moso bamboo (Phyllostachys edulis). Tree Genetics & Genomes,2017, 13: 43. doi:10.1007/s11295-017-1114-3

23Zhou M*, Xu C, Shen L, Xiang W, Tang D. Evolution of genome sizes in Chinese Bambusoideae (Poaceae) in relation to karyotype. Trees,2017, 31(1): 41–48

24Jiang KY,Zhou, MB*, Yang HY, Fang W. Cloning and functional characterization of PjCAO gene involved in chlorophyll b biosynthesis in Pseudosasa japonica cv. Akebonosuji. Trees,2016, 30: 1303–1314

25Zhou MB*,Zheng Y, Liu ZG, Xia XW, Ding-Qin Tang DQ, Fu Y, Chen M. Endo-1,4-b-glucanase gene involved into the rapid elongation of Phyllostachys heterocycla var. pubescens, Trees,2016,30: 1259–1274

26Zhou M*, Tao G, Pi P, Zhu Y, Bai Y, Meng X. Genome-wide characterization and evolution analysis of miniature inverted-repeat transposable elements (MITEs) in moso bamboo (Phyllostachys heterocycla). Planta,2016, 244:775–787.

27Jiang KY,Zhou MB*. Cloning and functional characterization of PjPORB, a member of the POR gene family in Pseudosasa japonica cv. Akebonosuji. Plant Growth Regulation,2016, 79(1): 95–106

28An MM, Guo C, Lin PP,Zhou MB*. Heterogeneous evolution of Ty3-gypsy retroelements among bamboo species. Genet. Mol. Res.,2016, 15(3). doi: 10.4238/gmr.15038515

29Xia XW, Gui RY, Yang HY, Fu Y, Fang W,Zhou MB*. Identification of genes involved in color variation of bamboo culms by suppression subtractive hybridization. Plant Physiology and Biochemistry.2015,97: 156-164

30Zhou MB*, An MM, Xia XW, Yang HY, Cheng MM, Wang KL, Fang W. Sequencing and phylogenetic analysis of the chloroplast genome ofPseudosasa japonicaf. Akebonosuji. Biochemical Systematics and Ecology,2016, 69:41-50

31Yang HY, Xia XW, Fang W, Fu Y, An MM,Zhou MB*. Identification of genes involved in spontaneous leaf color variation in Pseudosasa japonica. Genet. Mol.Res.,2015, 14 (4): 11827-11840

32Zhou MB, Zhong H, Hu JL, Tang DQ. Ppmar1 and Ppmar2: the first two complete and intact full-length mariner-like elements isolated in Phyllostachys edulis. Acta Botanica Gallica: Botany Letters,2015, 162(2):127-137

33Zhou MB, Liu XM, Tang DQ.PpPIF-1: first isolated full-lengthPIF-like element from the bambooPhyllostachys pubescens.Genet. Mol. Res.2012, 11 (2): 810-820

34Zhou MB, Zhang Y, Tang DQ. Characterization and Primary Functional Analysis of BvCIGR, a Member of the GRAS Gene Family in Bambusa ventricosa.Bot Rev,2011,77(3):233-242.

35Zhou MB, Zhong H, Tang DQ. Isolation and characterization of seventy-nine full-length mariner-like transposases in the Bambusoideae subfamily. J Plant Res,2011, 124: 607–617

36Zhou MB, Yang P, Gao PJ, Tang DQ. Identification of differentially expressed sequence tags in rapidly elongating phyllostachys pubescens internodes by suppressive subtractive hybridization. Plant Molecular Biology Reporter,2011, 29: 224–231

37Zhou MB, Liu XM, Tang DQ. Transposable elements in Phyllostachys pubescens (Poaceae) genome survey sequences and the full-length cDNA sequences, and their association with simple-sequence repeats. Genet. Mol. Res.,2011, 10 (4): 3026-3037

38Zhou MB, Lu JJ, Zhong H, Liu XM, Tang DQ. Distribution and diversity of PIF-like transposable elements in the Bambusoideae subfamily. Plant Sci,2010, 179: 257–266.

39Zhou MB, Lu JJ, Zhong H, Tang KX, Tang DQ. Distribution and polymorphism of mariner-like elements in the Bambusoideae subfamily. Plant Syst Evol,2010, 289: 1–11

40Zhou MB, Zhong H, Zhang QH, Tang KX, Tang DQ. Diversity and evolution of Ty1-copia retroelements in representative tribes of Bambusoideae subfamily. Genetica,2010, 138: 861–868

41Zhong H,Zhou MB**, Xu CM, Tang DQ. Diversity and evolution of Pong-like elements in Bambusoideae subfamily. Biochem Syst Ecol,2010, 38: 750–758

42Chen WW, Qin QP, Zheng YP, Wang C, Wang S,Zhou MB, Zhang C, Cui YY. Overexpression of Doritaenopsis Hybrid EARLY FLOWERING 4-like4 Gene, DhEFL4, Postpones Flowering in Transgenic Arabidopsis.2016, Plant Molecular Biology Reporter, 34(1):103–117

43Chen W, Qin Q, Zhang C, Zheng Y, Wang C,Zhou MB, Cui Y. DhEFL2, 3 and 4, the three EARLY FLOWERING4-like genes in a Doritaenopsis hybrid regulate floral transition. Plant Cell Rep.2015, 34(12): 2027-2041.

44SunXS, Qin QP,ZhangJ, Zhang C,Zhou MB, Paek KY, Cui YY.Isolation and characterization of theFVEgene of aDoritaenopsishybrid involved in the regulation of flowering.Plant Growth Regulation,2012, 68(1): 77-78

45SunXS, Qin QP,ZhangJ, Zhang C,Zhou MB, Paek KY, Cui YY.Cloning and characterization of aDoritaenopsishybridPRP39gene involved in flowering time.Plant Cell, Tissue and Organ Culture (PCTOC),2012, 110(3): 347-357

46Qin QP, Kaas Q, Zhang C, Zhou LP, Luo XY,Zhou MB, Sun XM, Zhang LL, Paek KY, Cui YY. The Cold Awakening of Doritaenopsis ‘Tinny Tender’ Orchid Flowers: The Role of Leaves in Cold-induced Bud Dormancy Release. J Plant Growth Regul,2012, 31(2): 139-155

47Luo XY, Zhang C, Sun XM, Qin QP,Zhou MB, Paek KY, Cui YY. Isolation and characterization of aDoritaenopsishybrid GIGANTEAgene, which possibly involved in inflorescence initiation at low temperatures.Kor. J. Hort. Sci. Technol.,2011, 29 (2): 135-143

48Dong WJ, Wu MD, Lin Y,Zhou MB, Tang DQ. Evaluation of 15 caespitose bamboo EST-SSR markers for cross-species/genera transferability and ability to identify interspecies hybrids. Plant Breeding,2011,130:596–600

49Tang DQ, Lu JJ, Fang W, Zhang S,Zhou MB. Development, characterization and utilization of GenBank microsatellite markers in Phyllostachys pubescens and related species. Mol Breed,2010, 25: 299-311

50Lin Y, Lu JJ, Wu MD,Zhou MB, Fang W, Ide Y, Tang DQ. Identification, cross-taxon transferability and application of full-length cDNA SSR markers in Phyllostachys pubescens. Springerplus.2014, 3:486.

*通讯作者,**共同第一作者。


联系方式

通讯地址:浙江省临安市武肃666号,浙江农林大学东湖校区智能实验楼S309室

邮 编:311300

电 话:0571-63743869

邮 箱:zhoumingbing@zafu.edu.cn

上一条:郭小勤

下一条:邵继锋

关闭

联系我们

COPYRIGHT©2022浙江农林大学竹子研究院

地址:浙江省杭州市临安区武肃街666号智能实验楼  

 邮编:311300   电话:0571- 63743177